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1. Introduction

There is convincing evidence that hadron spectra at high p⊥ in nuclear collisions are

strongly suppressed [1, 2]. For neutral pion production in Au-Au collisions at RHIC the

nuclear modification factor RAA(p⊥) is measured to be about 0.2−0.3 in the range of trans-

verse momenta as large as 10GeV/c < p⊥ < 20GeV/c [3 – 5]. This quenching is usually

attributed to radiative parton energy loss, for which the relevant expressions are obtained

from perturbative QCD calculations [6, 7]. They are used to extract and analyze the prop-

erties of the deconfined medium produced in the collisions. As a consistency requirement

these properties should be compatible with the perturbative framework.

However, the detailed analysis given in [8, 9] results in a (time-averaged) value for

the transport coefficient q̂ which characterizes the medium, exceeding 5 GeV 2/fm, almost

a factor of 10 (or even more) bigger than a typical perturbative estimate at the energy

density expected for
√
sNN = 200GeV Au-Au collisions!

An independent work [10], based on [11], calculating the quenching factor for hard

pion production and comparing it with data measured at RHIC obeys this requirement of

perturbative consistency: an averaged value of q̂ ' 0.3 − 0.4 GeV 2/fm is found, corre-

sponding to an energy density ε ' 2 GeV/fm3, as expected from pQCD for a deconfined

equilibrated plasma. However, this value is based on imposing arbitrarily a mean path

length for the jet of about L = 5 fm, whereas for the denser medium discussed in [8] a

characteristic path length of L ' 2 fm is obtained.

A related work on the nuclear modification factor for leading large p⊥ hadrons (pi-

ons) [12], assuming a thermalized medium (and also taking into account absorption of
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thermal partons), shows that a value of RAA is obtained which is compatible with mea-

surements and the perturbative framework. This work based on the AMY [13] formalism

describes the coherent gluon radiation, incorporating the Landau-Pomeranchuk-Migdal

(LPM) effect in the range of gluon energies ω > ωBH , where ωBH (sometimes denoted

by ELPM ) corresponds to the transition energy to the incoherent Bethe-Heitler radiation

regime.

The analysis in [8], following the explicit calculations of ”quenching weights” [14], does

not distinguish between these two regimes. On the other hand, it does impose a kinematical

constraint, taking properly into account the effect due to the transverse momentum phase

space of the emitted gluon. This effectively constrains the soft LPM emission by imposing

a lower energy cut-off ω̂, which depletes the gluon energy distribution.

In this note we argue that the introduction of this cut-off ω̂ is a priori not accurate

enough because, as we shall see below, ω̂ is (much) smaller than ωBH and thus not relevant

for the LPM regime. This actually is one crucial reason for the large value of q̂ found in [8].

We instead show that using ωBH as the proper cut-off for the validity of soft LPM gluon

emission may lead to values of q̂ compatible with perturbative estimates.

The line of our arguments treating radiative energy loss follows the BDMPS [15, 16]

- Zakharov [17, 18] - Wiedemann [19] approach, as it is reviewed in [6, 7]. The trigger

bias induced by the steeply falling large p⊥ vacuum production cross section of produced

hadrons/neutral pions is treated as described in [20].

The infrared sensitivity of the quenching factor has already been commented upon in

[20], where it is emphasized that the energy ωBH plays a central role.

2. Limits on the quenching factor

As it is discussed in rather great detail in [20] the quenching effect is expressed by the

factor

Q(p⊥) =

∫
dεD(ε)

(
dσvacuum(p⊥ + ε)/dp2

⊥
dσvacuum(p⊥)/dp2

⊥

)
, (2.1)

where it is justified to express the probability D(ε) for emitting the energy ε into the

medium by a Poissonian energy distribution

D(ε) =
∞∑

n=0

1

n!

[
n∏

i=1

∫
dωi

dI(ωi)

dω

]
δ

(
ε−

n∑

i=1

ωi

)
· exp

[
−
∫
dω

dI

dω

]
. (2.2)

This expression is assumed to be valid for the emission of soft primary gluons. In the LPM

regime ω ≥ ωBH the bremsstrahlung spectrum dI/dω is given in [16]. Correspondingly the

multiplicity of LPM gluons with energies larger than ω is given by

N (ω) ≡
∫ ∞

ω
dω′

dI(ω′)
dω′

. (2.3)

For ω significantly less than the characteristic energy [14],

ωc =
1

2
q̂L2 (2.4)
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but larger than ωBH , the number of gluons is well approximated by

N(ω) ' 2αsCR
π

[√
2ωc
ω

+ ln 2 ln
ω

ωc
− 1.44

]
. (2.5)

The following remarks are crucial for the subsequent analysis:

• The probability D(ε) is normalized by
∫
dεD(ε) = 1.

• The ratio of cross sections in (2.1) is well approximated by

dσvacuum(p⊥ + ε)/dp2
⊥

dσvacuum(p⊥)/dp2
⊥

'
(

p⊥
p⊥ + ε

)n
' exp

(
− nε
p⊥

)
, (2.6)

when expressed in terms of an effective exponent n, which may depend on p⊥, n =

n(p⊥). In the following the approximation (2.6) is used.

• Concerning the underlying parton interactions one has to distinguish quark versus

gluon jets. Since our concern is mainly neutral pion production at RHIC in the

range 10 < p⊥ < 20GeV/c, we effectively assume a dominating quark jet, radiating

off (soft) gluons, therefore we take CR = CF = 4/3 in (2.5). This assumption is

supported by the analysis in [8].

• The quenching factor Q(p⊥) corresponds to the experimentally measured ratio [5]

RAA(p⊥) =
dNAA

< Ncoll > dNNN
, (2.7)

for central A-A collisions versus nucleon-nucleon (NN) collisions. In the following

only neutral pion production at pseudo-rapidity η = 0 is considered.

• The transverse momenta of the produced pions are not asymptotically large, although

only leading order pQCD calculations are considered.

Neglecting in the following the contribution from Bethe-Heitler emission (appendix A),

the quenching factor due to LPM emission becomes

Q(p⊥) '
∫ ∞

0
dεD(ε) exp

{
−nε
p⊥

}
= exp

{
−
∫ ∞

ωBH

dI

dω

[
1− exp

(
−nω
p⊥

)]
dω

}
, (2.8)

where we take as a lower cut-off the energy ωBH , which indicates the transition between the

Bethe-Heitler and the LPM regime. By partial integration and with (2.3), the quenching

factor becomes

Q(p⊥)=exp

{
−N(ωBH)

[
1−exp

(
−nωBH

p⊥

)]}
· exp

{
− n
p⊥

∫ ∞

ωBH

N(ω) exp

(
−nω
p⊥

)
dω

}
.

(2.9)

As N(ω) decreases with increasing gluon energy [20], one finds the following two bounds

for Q(p⊥):

Qmin(p⊥) = exp [−N(ωBH)] , (2.10)
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i.e. by replacing N(ω) = N(ωBH) in the integrand of the integral in (2.9), and

Qmax(p⊥) = exp

{
−N(ωBH)

[
1− exp

(
−nωBH

p⊥

)]}
, (2.11)

i.e. by neglecting the second exponential factor of (2.9). So that, the experimental ratio is

required to be bounded as follows,

Qmin(p⊥) < RAA(p⊥) < Qmax(p⊥) . (2.12)

One notes that actually Qmin(p⊥) does not depend on p⊥, and that Qmax(p⊥) approaches

1 for large p⊥ À nωBH . For a fixed value of p⊥/n ' O(1GeV ), the interval Qmax −Qmin
becomes rather tight, when ωBH is not a small energy.

When comparing the quantities Qmin,max with the ones defined in [8, 14] Qmin is

related to the discrete weight of the probability distribution D(ε) by p0 = Qmin, where,

instead of the soft cut-off ω̂ the Bethe-Heitler one ωBH has to be taken, as required by

the LPM radiation formalism. According to our analysis Qmax is the relevant, important

quantity, related to the continuous part of D(ε), which translates to Qmax −Qmin.

One may notice that the suppression factor Q(p⊥) of (2.9) does satisfy (for the same

value of ωc)

Q(p⊥, ωBH) ≥ Q(p⊥, ω̂) , (2.13)

where the value of the lower cut-off is indicated. But here is where Qmax comes into the

game. Its actual value and the ones of the various energy scales cannot be left out of the

discussion !

Typical estimates of the medium characteristics as constrained by the experimental

results are discussed in the next section. In particular we find that ωBH ∼ 1.5−2.0GeV . As

a consequence, for values of p⊥/n ∼ 1GeV , the boundsQmin, Qmax are indeed constraining.

On the contrary, taking ω̂ as the lower energy cut-off, one finds that due to ω̂ ¿ ωBH ,

Qmin and Qmax differ significantly and the relation (2.12) is no longer constraining.

Replacing ωBH by ω̂ in the estimate for Qmax, the constraints are not very tight indeed:

as an example when choosing ω̂ ' 0.45 GeV , guided by relation (3.6) to be derived in the

next section, we find Qmax ' 0.55, instead of Qmax ' 0.30. In both cases Qmin = 0.2.

3. Kinematical and consistency constraints

As mentioned earlier, the detailed discussion given in [8] in order to determine the medium

induced gluon radiation intensity dI/dω takes into account the kinematical constraint as-

sociated to the transverse momentum phase space of the emitted gluon. This constraint is

not implemented in earlier works [15]. The effect of the kinematical limitation is obtained

by estimating the ratio k⊥/ω in the LPM regime: in this coherent regime the transverse

momentum k⊥ of the emitted gluon may be given by

k2
⊥ '

tcoh
λg

µ2 , (3.1)
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where µ is the typical transverse momentum transfer in a single scattering (i.e. the Debye

mass screening the gluon exchange) and λg the gluon mean free path, such that tcoh/λg
is the number of coherent scattering centers in the medium which the gluon encounters

before being emitted after the time tcoh ' 2ω/k2
⊥. One finds

k2
⊥ '

√
2q̂ω , (3.2)

where q̂ ' µ2/λg. As a consequence, since k⊥ ≤ ω, gluons have to be emitted dominantly

above the energy ω̂ defined by

ω̂ = (2q̂)1/3 = ωc

(
2

R

)2/3

, (3.3)

where it is convenient to introduce the dimensionless parameter [21, 22, 14]

R = ωcL =
1

2
q̂L3 . (3.4)

Now, we should take into account that the multiple scattering formalism used through-

out the derivation of dI/dω requires the condition [23, 15]

λgµÀ 1 . (3.5)

Using the fact that ωBH may be expressed as ωBH ' λgµ
2 we obtain the following para-

metric inequality
ω̂

ωBH
∼ 21/3

(λgµ)4/3
¿ 1 . (3.6)

As a consequence of this inequality, the Bethe-Heitler energy remains the proper and

relevant lower limit for the validity of the LPM gluon emission spectrum.

Let us summarize what is already known about the implementation of the various

above mentioned constraints. In the BDMPS framework [15, 16] where no kinematical

cut-off is imposed on the k⊥ integration, i.e. in the limit R → ∞, the gluon number only

depends on the ratio ω/ωc: N(ω) = N(ω/ωc). As a consequence the resulting quenching

factor Q(p⊥) is effectively a scaling function in the variable X = p⊥/(nωc) [20], such that

in the relevant analysis given in [10] only the characteristic gluon energy ωc is extracted

from the the neutral pion single-inclusive data measured by the PHENIX Collaboration

in Au-Au collisions [3, 4], and found to be ωc = 20 − 25GeV . Moreover, as already

mentioned, the path length is arbitrarily chosen so that the medium characteristics are

not quantitatively constrained. In [8] the typical value of the parameter R relevant for

the description of RHIC data on pion production at
√
sNN = 200GeV is estimated to be

R ' 1000, equivalent to ω̂ ' 0.016 ωc.

4. Comparison with experiment

We shall first discuss a few semi-quantitative estimates of the parameters describing the

medium extracted from the comparison with data within the framework described in the

previous sections.
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4.1 Averages

We concentrate on the data for RAA(p⊥) with p⊥ ≥ 10GeV/c: RAA(p⊥) ' 0.2, remaining

essentially flat up to p⊥ ' 20GeV/c.

In order to start the discussion, we use these data to obtain values for Qmin and Qmax,

corresponding to the experimental error bars. Taking Qmin ' 0.2 leads to N(ωBH/ωc) '
1.6, which allows to estimate ωBH/ωc ' 3.5 · 10−2 when using (2.5) and αs = 1/2 (see also

figure 1). When we take p⊥/n ' O(1GeV ), observing that the experimental error bars

allow us to fix the value of Qmax < 0.3, we deduce the typical value of ωBH . From (2.11)

we obtain ωBH ≥ 1.4GeV , in agreement with thermal estimates (appendix B). Taking

ωBH ' 1.6GeV , we find ωc ' 45 GeV . We note that this value is bigger by a factor 2 than

the one extracted in [10].

Depending on the typical average path length we derive estimates for the time

−averaged transport coefficient,

q̂ =
2ωc
L2
' 18

(L[fm])2

GeV 2

fm
, (4.1)

i.e. q̂ ' 1.1 GeV 2/fm for L = 4 fm, and q̂ ' 2.0 GeV 2/fm for L = 3 fm. This corresponds

to values of R ∼ 900 − 700, not far from R ' 1000 in [8].

We observe that these estimates are indeed valid beyond the R =∞ limit, since in the

region of ωBH/ωc > 3.5 10−2 the sensitivity on R, for R ≥ 1000, becomes weak.

The cut-off ωBH is effectively of order 1−2 GeV whereas ω̂, as imposed by Eskola et al.

[8] is also 1 GeV , when using relations given in [14]. One may wonder then why choosing

one or the other is a crucial feature, independently of judging the validity of using the LPM

spectrum away from ω > ωBH . One way to understand qualitatively this fact is that in

the analysis of ref. [14], the ω̂ cut-off is implemented effectively in the k⊥ integration for

the emitted gluon whereas here the ωBH cut-off appears as an IR cut-off on the emitted

gluon energy in the expression of Q(p⊥). That has consequences on the effectiveness of

the cut-off ending up with the following estimates: on the one hand ωBH/ωc ∼ 3.5 · 10−2,

on the other hand for values of R ∼ 1000 , ω̂/ωc ∼ 10−2 as inferred from eq. (3.3), thus

leading to different values of ωc and q̂ when taking a cut-off order of magnitude of 1 GeV.

In fact, what should be done is to implement both cut-offs in the calculation of the

quenching weights of Ref [14]. The 1st one, ωBH , is essential for the validity of the soft

LPM gluon emission regime, the 2nd one, ω̂, is much smaller than ωBH , which indicates

that the shape of the emission spectrum may not be too sensitive to this 2nd cut-off. This

is what we have assumed in our semi-quantitative analysis but a more complete calculation

should be performed.

Let us nonetheless comment further-at a semi-quantitative level-on the impact on the

value of q̂ of the choice of ω̂ rather than ωBH as the cut-off.

Indeed the above indicates that although larger than expected from leading order

estimates based on the presence of a thermalized and ideal QGP (appendix B), the values

obtained above for q̂ are much smaller than the ones quoted in [8], namely 5 < q̂ <

15GeV 2/fm.
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Figure 1: The gluon multiplicity as a function of ω, for R =∞ (solid curve) and R = 1000 (dashed

curve) taken from [14], but for αs = 1/2.

An even smaller value may be obtained with L = 5 fm, namely q̂ ' 0.7 GeV 2/fm. In a

thermal gluonic system this implies an (time− averaged) energy density of ε ' 4GeV/fm3.

It is obvious that the values of q̂ and L are strongly correlated, namely a large transport

coefficient, corresponding to a dense medium implies a shorter path length L, and vice

versa. For a realistic average path length of L ' 3 fm in the case of Au-Au collisions under

consideration the prefered value of the time− averaged transport coefficient becomes

q̂ ' 2 GeV 2/fm , (4.2)

which may still be accomodated into the pQCD framework, at least within the uncertainties

of LO approximations, contrary to the ”strong” QGP values of [8].

In fact, the actual values of the cut-off cannot be left out of the discussion. Taking

numbers quoted above: q̂ = 10 GeV 2/fm and L = 2 fm, leads to ωc = 100 GeV . If as

indicated above, we take ω̂/ωc ' 10−2, one finds ω̂ ' 1GeV , and thus correspondingly

ωBH ' 3−4 GeV , which is too large to make sense for energies/transverse momenta under

consideration! If, on the other hand, we want to have a reasonable value of ωBH ' 1.4 GeV ,

from the start, imposing correspondingly that the value of ω̂ is a factor 3− 4 smaller and

keeping ω̂/ωc ' 10−2, we find ωc and thus q̂, 3 -4 times smaller. We use the value of

Qmax ≤ 0.3 and Qmin ' 0.2 as a way to constrain the relevant parameters: from Qmax, we

take the cut-off to be ' 1.4 GeV . This cut-off can only be ωBH . Then from Qmin ' 0.2,

we deduce ωc. Finally, we find, depending on the length L, reasonably small values of q̂.

A determination of the average L should be possible with the expression for Qmin(p⊥),

(2.10), which depends on L. Since ωBH ¿ ωc, we use to a good approximation (2.5) to

determine N(ωBH) = N(ωBH/ωc) and insert (neglecting logarithmic factors)

2ωc
ωBH

' L2

λ2
g

=

(
Nc

CF

)2( L
λq

)2

, (4.3)
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defining the quark mean free path λq = Nc
CF
λg, such that

Qmin(p⊥) ' exp

{
−2αsCF

π

[
Nc

CF

L

λq
+ ln 2 ln

(
2λ2

qC
2
F

L2N2
c

)
− 1.44

]}
. (4.4)

In leading order L/λq À 1 the dependence with respect to the path length has the

typical characteristic behaviour of a survival probability exp [−L/λeff ], where λeff '
π

2αsNc
λq ' λq for αs ' 1/2. Without further geometrical restrictions the mean path length

〈L〉 would be just given by the mean free path of a quark jet in the medium, 〈L〉 ' λq.
A better estimate of L/λq, however, is obtained by taking the full expression (4.4) into

account: for Qmin ' 0.2 the corresponding ratio is L/λq ' 3.35.

In order to obtain L, we estimate the mean free path λq = 9/4λg from q̂ and ωBH by

λq '
9

4

√
ωBH
q̂
' 0.9 fm , (4.5)

with q̂ ' 2GeV 2/fm and ωBH ' 1.6GeV and find L ' 3 fm, consistent with the prefered

value given above. Note the related estimate for the mass µ: µ ' 0.9 GeV .

4.2 Nuclear geometry

So far we have considered averaged values for Qmin, Qmax without taking the nuclear

geometry explicitely into account. We now present a more detailed discussion which, as

we shall show, leads on a firmer basis to similar conclusions as above as far as the medium

parameters are concerned. We assume head-on collisions and essentially cylinder-like Au

nuclei. The quark jet is produced in Au-Au collisions at mid-rapidity and propagates in

the transverse plane. Following [8], one starts from the geometrical transverse path length

Lgeom(~s) = −s cosφLS +
√
s2 cos2 φLS +R2

Au − s2, (4.6)

where the position at which the parton is produced is denoted by the vector ~s in the trans-

verse plane. φLS is the angle of propagation with respect to this vector. This geometrical

picture allows us to obtain an average value for 〈Qmin〉 by calculating

〈Qmin(q̂/ωBH)〉 =

∫
d2s exp {−N(Lgeom)}

πR2
Au

, (4.7)

with |~s| ≤ RAu, the radius of the Au nucleus. In order to obtain N(Lgeom) we use (2.5)

with ωc/ωBH = q̂/(2ωBH) L2
geom.

In figure 2 we plot 〈Qmin〉 as a function of q̂/ωBH , and observe that 〈Qmin〉 ' 0.2 for

q̂/ωBH ' 1.4
GeV

fm
. (4.8)

In the same figure 2 we plot 〈Qmax〉, obtained analogously to (4.7), for different values of

ωBH (and for n/p⊥ = 1/GeV ).

In order to have 〈Qmax〉 < 0.3 - together with 〈Qmin〉 ' 0.2 - we find 0.75 < ωBH <

2.0 GeV .

– 8 –
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Figure 2: 〈Qmin〉 (solid curve) and 〈Qmax〉, respectively, as functions of q̂/ωBH according to (4.7).

〈Qmax〉 for different values of ωBH :0.75 (dotted), 1.15 (dashed-dotted) and 2.75GeV (dashed curve).

In figure 3 we show 〈Qmin〉, but this time as a function of λq, obtained from

〈Qmin(λq)〉 =

∫
d2s Qmin(Lgeom/λq)

πR2
Au

, (4.9)

after inserting L = Lgeom in (4.4). This way we find λq ' 0.85 fm (λg ' 0.38 fm), when

Qmin ' 0.2, in good agreement with (4.5).

From figure 3 we deduce that 0.65 < µ < 1.1 GeV . Finally, within these bounds the

transport coefficient q̂ ' µ2/λg becomes

q̂ ' 1.0 − 3.0 GeV 2/fm . (4.10)

Averaging with respect to the nuclear geometry in this straightforward manner leads to a

final estimate which is compatible with (4.2). The ”uncertainty” given by (4.10) may be

considered as ”theoretical error” on the derived medium parameters.

Concerning the robustness of the estimate (4.10) for q̂, one has to keep in mind that

besides the IR sensitivity under discussion, all the estimates are based on LO QCD calcu-

lations. Nevertheless, the explanation of quenching as being due to the LPM radiation in

a perturbative regime appears to be a robust statement.

A value of q̂ ' 1.8 GeV 2/fm would correspond to a temperature of T ' 375MeV ,

corresponding to an average energy density of ε ' 12.5 GeV/fm3, in agreement with the

results quoted in [12].

In order to obtain the actual value of q̂ at the very early stage of the collisions, at times

τ ' 1/p⊥ < 2 · 10−2 fm, one has to include the effects due to the longitudinal [24, 22], but

also transverse [25] expansion of the dense system during the time of O(L), the jet takes

to propagate through this medium.

– 9 –
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Figure 3: 〈Qmin〉 (solid curve) and 〈Qmax〉, respectively, as functions of λq according to (4.9).

〈Qmax〉 for different values of the screening mass µ: 0.65 (dotted), 0.8 (dashed-dotted) and 1.1GeV

(dashed curve).
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A. Estimate of the Bethe-Heitler and absorption contributions

In the plausible context, where the medium is thermalized, let us investigate how the

contributions of the Bethe-Heitler and the absorption spectra modify the analysis discussed

so far in the paper.

In LO pQCD the Bethe-Heitler-Gunion-Bertsch [26] differential spectrum for inclusive

gluon production in a medium of length L in the presence of L/λg scatterers reads

dI

dyd2p⊥
=
αsCF
π2

1

p2
⊥

(
L

λg

)
, (A.1)

which after p⊥-integration becomes

ω
dI

dω

∣∣∣∣
BH

' αsCF
π

ln
ω2
BH

ω2
cut

(
L

λg

)
. (A.2)

Because of the presence of the (non-perturbative) IR-cut, ωcut, this BH-intensity is not

precisely determined. Nevertheless, an estimate of the gluon energy ωBH may be obtained

from matching (A.2) with the LPM expression for the intensity at ω = ωBH ,

ω
dI

dω

∣∣∣∣
LPM

' αsCF
π

√
2ωc
ωBH

, (A.3)
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valid for ω ¿ ωc. When logarithmic factors are taken to be of O(1), i.e. ωBH ' 1.65 ωcut,

we find

ωBH ' µ2λg, (A.4)

in terms of the screening mass µ and the mean free path of the gluon λg.

The resulting quenching factor becomes

QBH(p⊥) = exp

{
−
∫ ωBH

ωcut

dI

dω

∣∣∣∣
BH

[
1− enω/p⊥

]}
, (A.5)

and expanding the integrand in the limit of small ω, we find with (A.2)

QBH(p⊥) ≥ exp

{
−αsCF

π

(
L

λg

)
n

p⊥
(ωBH − ωcut)

}
. (A.6)

Following [12], we consider the absorption contribution in the presence of a heat bath.

It is assumed that for the radiation energy ω < 0 the spectrum is approximated by

dI

dω

∣∣∣∣
abs

' αsCF
π

1

|ω|

(
L

λg

)
e−|ω|/T , (A.7)

i.e. the Bethe-Heitler spectrum multiplied by a Boltzmann factor with temperature T . The

corresponding quenching factor Qabs(p⊥) then becomes

Qabs(p⊥) = exp

{
−
∫ ∞

0

dI

d|ω|
[
1− en|ω|/p⊥

]}

= exp

{
−αsCF

π

L

λg

∫ ∞

0

dω

ω
e−ω/T

[
1− enω/p⊥

]}
. (A.8)

The integral may be approximated by
∫ ∞

0

dω

ω
e−ω/T

[
1− enω/p⊥

]
' − n

p⊥

∫ ∞

0
dωe−ω/T = −nT

p⊥
, (A.9)

leading to

Qabs(p⊥) ≥ exp

{
αsCF
π

(
L

λg

)
nT

p⊥

}
. (A.10)

Finally, multiplying the two quenching factors QBH(p⊥) and Qabs(p⊥), leads to a lower

bound

QBH(p⊥)Qabs(p⊥) ≥ exp

{
+
αsCF
π

(
L

λg

)
n

p⊥
[T − (ωBH − ωcut)]

}
. (A.11)

Taking as typical numbers: ωBH ' 1.6GeV , ωcut ' 1 GeV , T = 350 MeV , p⊥ =

10GeV, n = 10, and L = 3 fm, λg = 0.38 fm, we find

QBH(p⊥)Qabs(p⊥) ≥ 0.7 . (A.12)

This indicates that we may as a first guess, as already suggested in [12], neglect alto-

gether the Bethe-Heitler and absorption processes, meaning that the values we thus obtain

for q̂ are in fact upper bounds, and therefore comforting the perturbative framework.
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B. Thermal parameters

Let us consider an equilibrated system (Nc = 3, Nf = 0) in the weak coupling QCD

limit [27] and give a short summary of the elements which enter our analysis.

In LO given the temperature T the screening mass is

µ2 = 4παsT
2. (B.1)

The gluon mean free path λg is expressed in terms of the gluon density

ρg =
16

π2
ζ(3)T 3 , ζ(3) = 1.202 , (B.2)

and the (transport) gluon-gluon cross section (to logarithmic accuracy)

σggT '
Nc

CF

2πα2
s

µ2
ln (1/αs) '

9πα2
s

2µ2
, (B.3)

when neglecting logarithmic dependence, i.e.

1/λg = ρgσ
gg
T '

18

π2
ζ(3)αsT ' 2.2 αsT . (B.4)

The mean free path for a quark is λq = 9/4λg. The corresponding energy density of this

gluonic system is

ε =
8π2

15
T 4. (B.5)

Typical orders of magnitude may be given e.g for a temperature of T = 400 MeV

and a coupling αs = 1/2: the screening mass is µ ' 1 GeV , the mean free path λg '
0.45 fm (λq ' 1 fm), implying ωBH ' µ2λg ' 2.25 GeV . The transport coefficient is

estimated as q̂ ' µ2/λg ' 2.2 GeV 2/ fm, leading to an energy density of ε ' 17 GeV/ fm3

when using q̂ ' 2 ε3/4 [28].
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